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Abstract
Background  Hypertension and vascular dysfunction are major health concerns, and studies have suggested 
different interventions, including dietary nitrate (NO3), to improve it. We sought to elucidate the effects of dietary NO3 
on plasma NO3 and nitrite (NO2) levels and to determine the shape of the effect of dietary NO3 on blood pressure 
(BP) and vascular health biomarkers.

Methods  PubMed, Scopus, and Web of Science were searched up to February 2024 for eligible randomized 
controlled trials (RCTs). The pooled results were reported as weighted mean differences (WMD) and 95% confidence 
intervals (CIs).

Results  Our analysis of 75 RCTs involving 1823 participants revealed that per each millimole (mmol) increase in 
the administered NO3 dose, both acute (WMD: 32.7µmol/L; 95%CI: 26.1, 39.4) and chronic-term (WMD: 19.6µmol/L; 
95%CI: 9.95, 29.3) plasma NO3 levels increased. Per each mmol increase in NO3 intake, a reduction in systolic BP levels 
was observed in the acute (WMD: -0.28mmHg; 95%CI: -0.40, -0.17), short-term (WMD: -0.24mmHg; 95%CI: -0.40, -0.07), 
and medium-term (WMD: -0.48mmHg; 95%CI: -0.71, -0.25) periods. Furthermore, a decrease in diastolic BP for each 
mmol increase in NO3 intake (WMD: -0.12 mmHg; 95% CI: -0.21, -0.03) was shown. Moreover, a linear dose-response 
relationship was indicated between each mmol of NO3 intake and medium-term pulse wave velocity (WMD: 
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Introduction
Elevated blood pressure (BP) contributes to the inci-
dence, mortality, and disability associated with cardio-
vascular diseases (CVDs) [1, 2]. It is estimated that the 
upward trend in the prevalence of hypertension (HTN) 
will continue and reach 1.5 billion people worldwide by 
2025 [3].

Meanwhile, arterial stiffness measured by pulse wave 
velocity (PWV) [4–6] or augmentation index (AI) [7], 
and endothelial function measured by flow-mediated 
dilation (FMD) [8] is an independent predictor of future 
cardiac events [9, 10] and plays a significant role in the 
pathogenesis of atherogenesis and HTN [11, 12]. Consid-
ering the bidirectional relationship between BP and vas-
cular health, therapeutic strategies for improving them 
are needed to prevent cardiovascular morbidity and mor-
tality [13–16].

Pharmacotherapy has a significant effect in lowering 
BP [17] but also has side effects and medication resis-
tance [18], in which only a third of individuals under-
going pharmacological treatment achieve adequate BP 
control [19]. Effective, low-cost, sustainable strategies are 
needed to manage BP and vascular dysfunction. Mean-
while, nonpharmacologic interventions, including dietary 
approaches, are a cornerstone for managing high BP [20].

Dietary interventions showed promise in reducing BP 
levels and improving vascular dysfunction [21–24], offer-
ing safe, affordable options easily integrated into daily 
life [25, 26]. Dietary recommendations include sodium-
restricted diets [27], and adopting the Dietary Approach 
to Stop Hypertension (DASH) diet, which emphasizes 
increasing fruits and vegetable consumption [28]. Previ-
ous clinical trials have utilized dietary vegetables such 
as beetroot and lettuce as rich sources of nitrate (NO3) 
(> 2500 mg NO3/kg) [29]. The ingestion of dietary NO3 
can lead to the production of nitric oxide (NO), which in 
turn causes vasodilation [30–32]. Additionally, dietary 
NO3 demonstrates anti-inflammatory and anti-aggrega-
tion properties and may impact energy production per-
formance [33–35].

Previous studies have extensively explored the efficacy 
of dietary NO3 in reducing BP levels and improving vas-
cular health markers, but some limitations should be 
addressed. Prior meta-analyses have failed to adequately 
differentiate between NO3 salts and dietary NO3 effects 
[36–40] and have mainly focused on NO3 from beet-
root, leaving the consumption of NO3 from other dietary 
sources unexplored [41–44]. An umbrella review indi-
cated that the effects of dietary NO3 on BP levels become 
more pronounced with higher doses, yet they did not 
clarify the shape of the association between dietary NO3 
dosage and BP levels [22]. Additionally, previous studies 
have highlighted vasodilation due to elevated serum NO3 
and nitrite (NO2) levels. Still, the extent of this effect and 
the relationship between dietary NO3 dosage and serum 
NO3 and NO2 levels remain uncertain. Some studies 
suggested that the impact of dietary NO3 on BP levels 
can be independent of the quantity of NO3 consumed 
[44]. Conversely, others proposed that this effect depends 
on the NO3 content in dietary sources [22].

We undertook a systematic review and meta-analysis 
to elucidate the potential dose-dependent impacts of 
dietary NO3 on plasma NO3 and NO2 as reservoirs for 
NO. We also aimed to determine the optimal dosage of 
dietary NO3 that positively affects BP levels and vascular 
health markers and stratify results based on the source 
of dietary NO3 and HTN status. Furthermore, we con-
ducted a safety analysis to evaluate the risk of adverse 
events following dietary NO3 supplementation.

Materials and methods
The present dose-response meta-analysis has been con-
ducted in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-analyses (PRISMA) 
statement [45] and also followed the guidelines of the 
Declaration of Helsinki. The protocol for this systematic 
review was registered in PROSPERO under the registra-
tion number CRD42024535335.

-0.07 m/s; 95%CI: -0.11, -0.03), medium-term flow-mediated dilation (WMD: 0.30%; 95%CI: 0.15, 0.46), and medium-
term augmentation index (WMD: -0.57%; 95%CI: -0.98, -0.15).

Conclusion  We observed dose-dependent increases in plasma NO3 and NO2 levels, along with consequent 
reductions in BP and enhancements in vascular health following dietary NO3 supplementation. Future high-quality, 
population-specific studies with optimized dietary NO3 dosages are needed to strengthen the certainty of the 
evidence.

Registration  The protocol for this systematic review was registered in PROSPERO under the registration number 
CRD42024535335.

Keywords  Nitrates, Hypertension, Vascular stiffness, Cardiometabolic risk factors, Controlled clinical trial, Preventive 
cardiology
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Systematic search
We systematically searched PubMed, Scopus, and ISI 
Web of Science up to February 2024. We employed key-
words related to intervention, outcome, and study design 
to identify potential eligible randomized controlled trials 
(RCTs). A detailed search strategy is provided in Supple-
mentary Table 1. We manually reviewed the reference 
lists of existing related reviews to augment the database 
search. Our search was restricted to studies published in 
English. Teams of two reviewers independently screened 
titles and abstracts according to pre-defined inclusion 
and exclusion criteria to identify potentially eligible 
RCTs.

Eligibility criteria
We employed the PICOS framework (population, inter-
vention, comparator, outcome, and study design) to 
establish our inclusion and exclusion criteria. Eligible for 
inclusion in the present meta-analysis were published 
human interventional studies that met the following cri-
teria: (1) RCTs, whether with parallel or crossover design, 
conducted on adults aged 18 years or older; (2) Investi-
gating the effect of dietary NO3 on systolic BP (SBP), dia-
stolic BP (DBP), ambulatory SBP, ambulatory DBP, mean 
arterial pressure (MAP), heart rate (HR), ambulatory 
HR, PWV, FMD, and AI, or measured plasma NO2 and 
NO3 levels. (3) Investigating the effect of various doses 
of dietary NO3 on BP, HR, vascular health biomarkers, 
or plasma NO2 and NO3 levels, compared to a placebo; 
(4) Considering changes in BP, HR, vascular health bio-
markers, or plasma NO2 and NO3 levels as either pri-
mary or secondary outcomes; (5) Presenting mean and 
standard deviation (SD) of changes in BP, HR, vascular 
health biomarkers, or plasma NO2 and NO3 levels across 
study arms, or provided adequate information for esti-
mation; and (6) Reporting the number of participants in 
each study arm. Studies with a non-randomized design, 
quasi-experimental trials, those involving adolescents 
(under 18 years old), pregnant and lactating women, and 
trials incorporating exercise plans alongside dietary NO3 
interventions were excluded from the analysis.

Data extraction
Two reviewers (MHR and AMH), working independently 
and in duplicate, screened the full texts of eligible RCTs 
and extracted the following data: author and year of pub-
lication, location of the population, study design, dura-
tion of the study, characteristics of the population (sex 
and health status), total sample size, intervention details 
(type and dose of dietary NO3), comparison groups, and 
studied outcomes. Any discrepancies between the two 
reviewers were resolved through discussion.

Risk of bias assessment
Two reviewers (MHR and SGH), independently and in 
duplicate conducted the risk of bias assessments using 
the Cochrane risk of bias tool [46]. RCTs were assigned 
an overall quality score based on bias domains: good (≤ 1 
item was unclear and none were high), fair (≤ 2 items 
were unclear or at least one was high), and high risk of 
bias (≥ 2 items were high). Any discrepancies in the risk 
of bias assessment were resolved through discussion.

Statistical analysis
We calculated the weighted mean difference (WMD) 
and 95% confidence interval (CI) of change to report the 
meta-analysis results. To conduct our meta-analysis, we 
used a random effect model [47] and followed a compre-
hensive method previously described [48]. We performed 
a random-effects pairwise meta-analysis to examine the 
impact of dietary NO3 supplementation on plasma NO3 
and NO2 levels, considering both acute (within a few 
hours of supplementation) and chronic (after several days 
of supplementation) levels [47]. Additionally, we utilized 
the one-stage approach introduced by Crippa and Orsini 
et al. [49] to compute the mean difference and its corre-
sponding SD for changes in the studied outcomes across 
various dietary NO3 dosages within the intervention 
group compared to the control group in each trial. We 
examined other studied outcomes across three supple-
mentation durations: acute (within a few hours of supple-
mentation), short-term (1–7 days of supplementation), 
and medium-term (more than a week of supplementa-
tion) [22].

The potential publication bias was evaluated through 
Egger’s test [50], Begg’s test [51], and visual examination 
of funnel plots. We quantitatively assessed heterogeneity 
using the I2 statistic and conducted a χ2 test for homoge-
neity (P-heterogeneity > 0.10) [52]. For the safety analysis 
(comparative effects of dietary NO3 on adverse events 
and withdrawal due to intervention), we calculated rela-
tive effects based on the number of participants and 
events in both the intervention and control groups.

We conducted a one-stage weighted mixed-effects 
meta-analysis to elucidate the effect of various doses of 
dietary NO3 on BP, HR, vascular health biomarkers, 
or plasma NO2 and NO3 levels [49]. Nonlinear dose-
response relationships were assessed using restricted 
cubic splines with 3 knots at Harrell’s recommended cen-
tiles (10%, 50%, and 90%). The fitness of the non-linear 
model was determined by the significance of the Wald 
test [49, 53]. Finally, we conducted a sensitivity analysis 
to assess the impact of dietary NO3 on BP separately 
in hypertensive individuals and in studies that supple-
mented beetroot. Statistical analyses were performed 
using STATA software version 17.0, with significance set 
at a two-tailed P value of less than 0.05.
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Grading the evidence
We employed the Grading of Recommendations Assess-
ment, Development, and Evaluation (GRADE) tool to 
assess the overall certainty of the evidence (CoE) for each 
outcome [54] based on a minimally contextualized and 
null effect approach [55]. Two pairs of authors, MN and 
MHR, independently conducted the GRADE assessment, 
and any discrepancies were resolved through consensus 
to reach a unified conclusion.

There are sets of criteria responsible for downgrading 
or upgrading the evidence. These criteria include limita-
tions of the study (based on the risk of bias as assessed 
by the Cochrane Risk of Bias tool) [56], inconsistency 
(referring to substantial unexplained heterogeneity 
between studies; I2 ≥ 50% and P heterogeneity < 0.10) 
[57], indirectness (pertaining to factors related to popu-
lation, intervention, comparator, or outcome that limit 
the generalizability of the findings) [58], imprecision 
(indicated by small sample size, wide 95% CIs for the 
WMDs or when the point estimate was not statistically 
significant. Of note, we used linear dose-response point 
estimate for the BP and vascular health biomarkers.) [59], 
and potential evidence of publication bias. However, a 
large effect size and dose-response gradient contribute to 
upgrading the CoE. Therefore, given that our study is a 
dose-response meta-analysis, we could upgrade the CoE 
when the dose significantly influenced the outcomes. The 
GRADE system categorizes CoE as high, moderate, low, 
or very low, as follows: (1) Very low: The actual effect is 
highly uncertain and may significantly deviate from the 
estimated effect; (2) Low: The actual effect may sub-
stantially deviate from the estimated effect, and further 
research is highly likely to impact both our CoE in the 
estimated effect and the effect estimate itself; (3) Moder-
ate: CoE levels when the estimated effect closely approxi-
mates the actual effect. Further research can significantly 
influence our confidence in the estimated effect and may 
alter the estimate; and (4) High: CoE levels when there 
is a substantial degree of certainty that the actual effect 
aligns with the estimated effect. Additional research is 
unlikely to alter our confidence in the estimated effect.

Results
Study selection
The flow diagram for study selection is presented as 
Fig. 1. Initially, our systematic search in databases yielded 
6061 results, of which 1493 were duplicates. The remain-
ing records (n = 4568) underwent initial screening based 
on the title and abstract review. Out of these, 141 records 
required full-text review, leading to the inclusion of 75 
RCTs [30, 60–133] and the exclusion of 66 studies due 
to added exercise plan to the main intervention (n = 21), 
did not report pre/post-intervention data (n = 35), did not 

illustrate clear diagram (n = 2), not suitable control group 
(n = 7) and conducted on pregnant women (n = 1).

Study characteristics
Supplementary Table 2 outlines the primary character-
istics of the included RCTs. Our inclusion of 75 RCTs 
encompassed 86 studies, accounting for variations in fol-
low-up duration or NO3 supplementation dosage among 
participants. Across all the RCTs included, there were 
1823 participants.

Among the 86 studies, 12 followed a parallel design, 
while the remaining used a crossover design. Addition-
ally, 2 studies were triple-blind, 62 were double-blind, 7 
were single-blind, and 15 were open-label. Of all included 
studies, 47 were on healthy participants, 14 were on indi-
viduals with HTN or pre-HTN, 6 were on hypertensive 
individuals with heart failure (HF), type 2 diabetes mel-
litus (T2DM), or chronic obstructive pulmonary disease 
(COPD), and the remaining studies (n = 19) focused on 
other medical conditions. Of note, the mean age of study 
participants ranged from 18.6 to 72.5 years. Dietary NO3 
supplementation was administered in various forms, 
including beetroot (n = 70), spinach (n = 5), lettuce (n = 1), 
or a NO3-rich diet (n = 10). Additionally, the intervention 
types were varied and included juice (n = 68), gel (n = 1), 
cereal bar (n = 1), extract (n = 2), or dietary plan (n = 14). 
Additionally, the daily dose of dietary NO3 intake ranged 
from 0.35 to 27.84 mmol. The study duration ranged from 
a minimum of 30 min in the acute phase to a maximum 
of 91 days in the chronic phase. Except for three studies, 
where participants received water [110] or had no inter-
vention [130, 134], in all the other studies, individuals in 
the control groups consumed specified placebos (such as 
usual or low NO3 diet, NO3-depleted juice, cereal bar, or 
gel) compared to the intervention groups.

Meta-analysis
Pair-wise analysis for the effect of dietary NO3 on plasma 
levels of NO2 and NO3
As indicated in Supplementary Fig.  1, our findings 
revealed that dietary NO3 supplementation significantly 
influenced plasma NO2 levels both in acute (WMD: 0.25 
µmol/L; 95% CI: 0.10, 0.40; I2: 97.8) and chronic (WMD: 
0.46 µmol/L; 95% CI: 0.23, 0.69; I2: 99.7) terms. Addition-
ally, dietary NO3 supplementation had a significant effect 
on acute (WMD: 390 µmol/L; 95% CI: 333, 446; I2: 99.5) 
and chronic (WMD: 175 µmol/L; 95% CI: 88.0, 262; I2: 
99.9) plasma NO3 levels.

Dose-response analysis for the effect of dietary NO3 on 
plasma levels of NO2 and NO3
Our study showed a dose-response relationship between 
dietary NO3 and plasma NO3 and NO2 levels. As indi-
cated in Fig. 2 and Supplementary Table 3, up to a dose 
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of 2 mmol of NO3 per day, there were no significant 
changes in plasma NO3 levels. However, at doses higher 
than 2 mmol per day, plasma NO3 levels increased lin-
early. Moreover, as depicted in Supplementary Fig.  2, 
for each mmol increase in NO3 dose, plasma NO3 lev-
els increased both in acute (WMD: 32.7 µmol/L; 95% CI: 
26.1, 39.4; I2: 99.3) and chronic (WMD: 19.6 µmol/L; 95% 
CI: 9.95, 29.3; I2: 99.8) terms. It has also been observed 
that per each mmol increase in NO3 intake, plasma NO2 
levels changed both in acute (WMD: 0.02 µmol/L; 95% 
CI: 0.02, 0.03; I2: 93.9) and chronic (WMD: 0.06 µmol/L; 
95% CI: 0.02, 0.09; I2: 99.7) terms.

Dose-response analysis for the effect of beetroot on plasma 
levels of NO2 and NO3
Our study showed a dose-response relationship between 
beetroot consumption and plasma NO3 and NO2 levels. 

As depicted in Fig.  3 and Supplementary Table 4, the 
most significant increase in chronic plasma NO3 lev-
els was observed at a dosage of 250 ml per day (WMD: 
202 µmol/L; 95% CI: 102, 303), beyond which the effect 
plateaued. Additionally, per each 70  ml dose of beet-
root intake (Supplementary Fig.  3), acute (WMD: 188 
µmol/L; 95% CI: 161, 215; I2: 99.5) and chronic (WMD: 
73.3 µmol/L; 95% CI: 59.6, 87.1; I2: 98.6) plasma NO3 lev-
els were increased. Moreover, the dose of beetroot intake 
exhibits a non-linear relationship with plasma NO2 lev-
els. The maximum change in chronic plasma NO2 lev-
els was observed at a daily dose of 250  ml of beetroot 
intake (WMD: 0.36 µmol/L; 95% CI: 0.15, 0.57), beyond 
which the effect declined. Acute plasma NO2 levels were 
increased up to a dose of 160  ml of beetroot per day 
(WMD: 0.25 µmol/L; 95% CI: 0.17, 0.33), after which the 
effect plateaued. Additionally, per each 70 ml increase in 

Fig. 1  The PRISMA flow diagram for the selection of the included studies
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beetroot intake, we observed an increase in acute (WMD: 
0.10 µmol/L; 95% CI: 0.08, 0.12; I2: 95.2) and chronic 
(WMD: 0.11 µmol/L; 95% CI: 0.08, 0.13; I2: 97.6) plasma 
NO2 levels.

Dose-response analysis for the effect of dietary NO3 on BP 
and vascular health biomarkers
As depicted in Fig.  4 and Supplementary Figs.  4 and 
5, there was a dose-response relationship between 
dietary NO3 dosage and levels of SBP (acute, short, and 
medium-term), DBP (acute-term), MAP (medium-term), 
PWV (medium-term), FMD (acute and medium-term), 
and AI (medium-term). For each mmol increase in NO3 
intake (Supplementary Fig.  6), there was a decrease in 
SBP levels in the acute (WMD: -0.28 mmHg; 95% CI: 
-0.40, -0.17; I2: 31.0), short-term (WMD: -0.24 mmHg; 

95% CI: -0.40, -0.07; I2: 32.5), and medium-term (WMD: 
-0.48 mmHg; 95% CI: -0.71, -0.25; I2: 53.6) periods. Addi-
tionally, a linear relationship was observed between NO3 
intake and acute-term DBP, with a decrease in DBP for 
each mmol increase in NO3 intake (WMD: -0.12 mmHg; 
95% CI: -0.21, -0.03; I2: 43.4). There was a non-linear 
dose-response relationship between dietary NO3 with 
medium-term MAP, that the greatest effect observed 
at a dose of 3 mmol dietary NO3 per day (WMD: -4.43 
mmHg; 95% CI: -7.84, -1.03). However, there was no sig-
nificant decrease in medium-term MAP at doses higher 
than 5 mmol dietary NO3 per day (Supplementary Table 
5). Furthermore, for each mmol increase in dietary NO3 
dosage, a linear dose-response relationship was observed 
between NO3 dose and medium-term PWV (WMD: 
-0.07  m/s; 95% CI: -0.11, -0.03; I2: 0.00), medium-term 

Fig. 2  Non-linear dose-response analysis for the effects of dietary nitrate (mmol/day) on WMDs of plasma levels of (a) chronic NO3, (b) acute NO3, (c) 
chronic NO2, and (d) acute NO2
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Fig. 4   Non-linear dose-response analysis for the effects of dietary nitrate (mmol/day) on the WMDs of (a) acute-term SBP, (b) short-term SBP, (c) medium-
term SBP, (d) acute-term DBP, (e) short-term DBP, and (f) medium-term DBP

 

Fig. 3  Non-linear dose-response analysis for the effects of beetroot (ml/day) on WMDs of plasma levels of (a) chronic NO3, (b) acute NO3, (c) chronic 
NO2, and (d) acute NO2
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FMD (WMD: 0.30%; 95% CI: 0.15, 0.46; I2: 67.2), and 
medium-term AI (WMD: -0.57%; 95% CI: -0.98, -0.15; I2: 
82.3).

We also performed a dose-response analysis in hyper-
tensive individuals (Fig.  5 and Supplementary Fig.  7). 
Dietary NO3 had a linear dose-response relationship 
with acute-term SBP, indicating that for each one mmol 
increase in NO3 intake, acute-term SBP decreased lin-
early (WMD: -0.38 mmHg; 95% CI: -0.62, -0.13; I2: 0.00).

Dose-response analysis for the effect of beetroot on BP
A significant dose-response relationship was observed 
between the dietary beetroot intake and levels of SBP 
(acute, short, and medium-term), DBP (acute-term), 
and MAP (acute-term) (Supplementary Figs.  8 and 9). 
A significant linear relationship was indicated between 
dietary beetroot intake and acute-term SBP, DBP, and 
MAP, such that for every 70  ml increase in the beet-
root intake, acute-term SBP (WMD: -1.23 mmHg; 95% 
CI: -1.80, -0.66; I2: 39.3), acute-term DBP (WMD: -0.57 
mmHg; 95% CI: -0.96, -0.17; I2: 46.3), and acute-term 
MAP (WMD: -0.82 mmHg; 95% CI: -1.54, -0.10; I2: 72.0) 
decreased linearly (Supplementary Fig.  10). Also, there 
was a non-linear relationship between dietary beetroot 
intake and short and medium-term SBP (Supplementary 
Table 6). Specifically, short-term SBP showed the great-
est reduction up to the use of a dose of 100  ml dietary 
beetroot per day (WMD: -2.68 mmHg; 95% CI: -4.43, 
-0.93), beyond which the observed reduction effect mini-
mized and was insignificant. Similarly, there was a non-
linear relationship between dietary beetroot intake and 
medium-term SBP; the most significant reduction was 
observed at a dose of 150  ml beetroot per day (WMD: 

-4.56 mmHg; 95% CI: -6.42, -2.71), after which the effect 
plateaued.

Publication bias
While significant publication bias was not detected con-
cerning the impact of dietary NO3 on chronic plasma 
levels of NO3 (P = 0.748) and NO2 (P = 0.266), visual 
inspection of funnel plots and Egger’s test revealed signif-
icant publication bias for acute NO3 (P = 0.001) and NO2 
(P = 0.019) plasma levels. This amount of publication bias 
indicates that smaller, non-significant studies may be 
missed from the analysis (Supplementary Fig. 11).

Risk of bias assessment
As shown in Supplementary Table 7, more than 80% of 
the included studies (62 out of 75) had fair or good qual-
ity. Among them, 28 RCTs exhibited good quality, with 
a low risk of bias across most domains, although some 
exceptions were noted for outcome assessment blinding 
or the potential for missing data. Furthermore, among 
the RCTs with a fair quality (n = 34), the primary reasons 
for fair quality were an unclear description of outcome 
assessment blinding and the random sequence gen-
eration method. Additionally, among the 13 RCTs that 
were classified as poor quality, the predominant issues 
included a lack of blinding among participants and per-
sonnel or the utilization of unsuitable allocation conceal-
ment methods.

Grading the evidence
The CoE for both pairwise and linear dose-response 
analysis results was provided in Supplementary Table 8. 
Plasma NO2 and NO3 levels in the chronic term and SBP 

Fig. 5  Forest plot of the linear dose-response analysis indicating WMDs and the 95% CI for the impact of each mmol increase in dietary nitrate dosage 
on acute-term SBP among hypertensive individuals
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(acute and short-term) and DBP (acute-term) were rated 
as Moderate due to their significant and homogeneous 
results. Also, acute plasma NO2 received a Low CoE due 
to suspected publication bias, while medium-term SBP 
was rated Low due to heterogeneity in results. Medium-
term MAP and FMD received a Low CoE due to small 
sample sizes. Additionally, acute plasma NO3 was rated 
Very Low due to suspected publication bias, while 
medium-term PWV received a Very Low rating due to 
homogeneity in the origin of published clinical trials and 
small sample size. Acute FMD was rated Very Low due 
to non-significant results with serious heterogeneity, and 
medium-term AI received a Very Low rating due to seri-
ous heterogeneity and small sample size. Notably, the risk 
of bias was serious for all outcomes except for acute and 
medium-term FMD.

Safety analysis
Seventeen RCTs [69–72, 74, 76, 77, 82, 83, 85, 94, 100, 
101, 108, 110, 113, 114] reported data on adverse events. 
Supplementary Table 9 provides detailed informa-
tion on the number of adverse events observed in each 
trial. Adverse events typically consist of discoloration of 
stool and urine, commonly known as beeturia. Studies 
reported that this discoloration is a typical effect of beet-
root supplementation, but it did not result in participant 
withdrawal or study discontinuation. Also, certain studies 
have reported side effects such as abdominal pain [70], 
diarrhea [69], nausea [77], and headache, along with gas-
trointestinal discomfort [94]. Furthermore, two studies 
[83, 113] indicated that some participants were excluded 
from the study due to reported unpalatability of the 
juice [113] and gastritis [83]. The safety analysis results 
(Supplementary Figs.  12, 13) revealed that dietary NO3 
supplementation did not lead to an increase in adverse 
events (Risk ratio: 1.00, 95% CI 0.35, 2.82 I2 = 0.00%) or 
withdrawal from the study (Risk ratio: 0.42, 95% CI 0.07, 
2.68; I2 = 0.00%).

Discussion
Our comprehensive analysis of 1,823 participants 
revealed a significant dose-response relationship between 
dietary NO3 dosage and plasma NO3 and NO2 levels. 
We also found dose-dependent effects of dietary NO3 on 
SBP, DBP, MAP, PWV, FMD, and AI levels. The reduction 
in BP was more pronounced in individuals with HTN 
compared to the general population. Additionally, dietary 
NO3 supplementation did not significantly lead to com-
plications or withdrawals from the study.

Excessive NO3 levels in food sources are a significant 
concern. However, the recommended daily intake of 
NO3 from meats and drinking water may not apply to 
vegetables and requires reassessment [39]. While NO3 
intake from meats can form carcinogenic compounds, 

vegetables are rich in polyphenols and antioxidants that 
prevent the formation of N-nitroso compounds by facili-
tating the conversion of NO2 to NO [135]. Currently, 
the acceptable daily limit for NO3 intake is 3.7  mg/kg 
of body weight per day [40]. However, the NO3 doses 
among included studies in our meta-analysis exceeded 
this acceptable daily intake (0.31 to 24.6 mg/kg for 70 kg 
individuals) Therefore, the optimal dosage of dietary 
NO3 supplementation for achieving beneficial effects 
on cardiovascular health parameters has yet to be firmly 
established.

We observed the dose-dependent effects of dietary 
NO3 dosage on plasma NO3 and NO2 levels, both in 
acute and chronic periods. Additionally, we found that 
the optimal dietary NO3 dose to significantly increase 
plasma NO3 levels is above 3 mmol per day, after which 
plasma NO3 levels increase linearly. This finding aligns 
with the established NO3–NO2–NO pathway, where 
dietary NO3 is converted to NO2 by bacteria in the 
tongue, further metabolized into NO in the stomach, and 
then reabsorbed into the bloodstream [136, 137]. Contin-
uous NO3 intake sustains increased plasma NO3 levels 
[138, 139], consequently lowering BP and potentially mit-
igating the risk of atherosclerosis and all-cause mortality 
[140, 141].

Moreover, our results revealed linear dose-response 
effects of beetroot on plasma NO3 and NO2 concentra-
tions up to 200–250 ml of beetroot per day. The defini-
tive mechanisms underlying the observed plateauing or 
decline of plasma NO3 and NO2 levels after reaching 
peak values at specified doses remain elusive and necessi-
tate further exploration. One plausible explanation could 
be that higher doses result in the saturation of absorption 
mechanisms, thereby diminishing the efficacy of NO3 
conversion NO and reducing cellular sensitivity to NO 
[142–144]. The inconsistency in NO3 levels among dif-
ferent interventions could potentially explain this finding 
and may be attributed to varietal differences, cultivation 
methods, storage conditions, and processing techniques 
[145–147]. Moreover, it was mentioned that the slope of 
the BP curves or serum NO3 levels, following the dosage 
of dietary NO3, exceeded those associated with beet-
root dosage. These findings may imply that the observed 
effects on BP reduction were primarily attributable to 
the NO3 content rather than other bioactive compounds 
present in the entire food matrix [148, 149].

According to our results, dietary NO3 supplemen-
tation leads to linear reductions in SBP (acute, short, 
and medium-term), as well as DBP in the acute phase, 
and exhibited a non-linear reduction in MAP over the 
medium-term. Given that a reduction of at least 2 mmHg 
in BP is typically considered a clinically significant unin-
tended BP-lowering effect [17], our findings suggest that 
a daily NO3 dose of 8 mmol is required to achieve a 
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significant reduction in BP. Furthermore, our sensitivity 
analysis unveiled a notably robust linear dose-response 
association between dietary NO3 and acute SBP reduc-
tion among hypertensive individuals. For each mmol 
increment in dietary NO3 dosage, we observed a 0.38 
mmHg reduction in acute SBP within the hyperten-
sive subgroup, contrasting with a 0.28 mmHg reduction 
in the overall population analysis. This finding implies 
that hypertensive populations may experience more 
significant advantages from dietary NO3 supplementa-
tion, possibly owing to their impaired NO bioavailability 
[150]. As HTN frequently involves endothelial dysfunc-
tion and diminished NO synthesis [151], augmenting 
NO bioavailability via dietary NO3 supplementation may 
directly oppose the underlying mechanisms contribut-
ing to elevated BP in this demographic. NO is involved in 
reducing BP by inducing vasodilation, achieved through 
the attenuation of cardiovascular sympathetic tone and 
neural control modulation [102, 152–154].

The BP reduction achieved through dietary NO3 is 
similar to the most effective nonpharmacological and 
pharmacologic interventions in terms of lowering BP. A 
network meta-analysis has indicated that the DASH diet 
exhibits the most significant effect on reducing SBP (6.97 
mmHg) and DBP (3.54 mmHg) among individuals with 
pre-HTN and HTN [155]. The advantages of adhering to 
the DASH diet can be attributed to including vegetables 
rich in NO3 [39]. The latest recommendations from the 
International Society of HTN highlight the potential BP-
lowering effect of vegetables as a source of NO3 [156]. A 
meta-analysis of 68 clinical trials revealed that a single 
antihypertensive medication can lower SBP and DBP by 
12 and 7 mmHg, respectively [17], while a combination 
therapy can result in a reduction of up to 18.9 mmHg in 
SBP [157].

Nevertheless, dietary NO3 achieved reductions in BP 
without adding to the number of pills patients had to 
take or increasing the risk of medication interactions 
and adverse side effects. Recent research has indicated 
that mineralocorticoid antagonists may not be effective 
in lowering BP in individuals with heart failure [158]. 
Contrary to dietary NO3, organic NO3s like isosorbide 
monoNO3 have shown ineffectiveness in enhancing the 
quality of life for heart failure patients and may poten-
tially induce hypotension and endothelial dysfunction 
[159]. Also, nitroglycerin and other NO3-containing 
medications may not be optimal choices for individuals 
with severe valvular stenosis or heart failure due to their 
adverse effects and propensity to provoke tachycardia 
[160, 161]. Our safety analysis indicates that the rarely 
reported complications linked to dietary intake of NO3 
are not expected to impede its utilization. Moreover, 
dietary NO3 shows an enhanced pathway in hypoxic 
and acidic environments, like ischemic tissue [159]. 

Consequently, the BP-lowering properties of dietary NO3 
could potentially lead to a decrease in the number or dos-
age of common antihypertensive medications needed to 
attain optimal control.

Recent studies indicate that relying solely on phar-
macological treatments may not always yield positive 
results, as some individuals may develop resistance to 
them [162]. Therefore, a comprehensive approach that 
includes a combination of pharmacological treatments, 
supplements, and lifestyle interventions appears to be 
more effective in managing BP [163]. A study comparing 
different treatments for resistant HTN found that com-
bining spironolactone with triple-drug therapy signifi-
cantly reduced SBP by 13.30  mm Hg [164]. Meanwhile, 
a clinical trial indicated that following the DASH diet, 
along with weight management, psychological counsel-
ing, and an exercise plan, can effectively lower both clinic 
and ambulatory BP by up to 12.5 mmHg and enhance 
endothelial function in individuals with resistant HTN 
[163].

Furthermore, our analysis revealed a linear dose-
dependent improvement of endothelial function 
(increased FMD), as well as a decrease in arterial stiffness 
of small muscular arteries (measured by AI) and elastic 
aorta (measured by PWV). The simultaneous enhance-
ments in FMD, PWV, and AI indicate that dietary NO3 
could potentially yield beneficial outcomes for cardiac 
function. A meta-analysis showed that each 1% increase 
in FMD caused a 13% decrease in the risk of cardiovas-
cular events [8]. Therefore, a 1.85% enhancement in FMD 
due to dietary NO3 supplementation [22] could poten-
tially lead to a 24% decrease in cardiovascular events.

Considering the bidirectional relationship between BP 
and vascular health, it is unclear if lowering BP improves 
vascular health or vice versa [165]. In general, oxidative 
stress plays a significant role in causing endothelial dys-
function by reducing the NO availability [166]. This leads 
to changes in the structure of the arterial wall, includ-
ing smooth muscle cell proliferation, collagen deposi-
tion, and elastin fragmentation [167]. The enhancement 
of vascular health appears to rely on additional beneficial 
compounds found in dietary NO3 sources. One pos-
sible explanation for these effects is the potential ability 
to inhibit NADPH oxidase activity and directly neutral-
ize free radicals [168]. Furthermore, dietary NO3 supple-
mentation enhances the levels of plasma NO3 and NO, 
which play a crucial role in maintaining a healthy endo-
thelial function [169]. This is attributed to its vasodila-
tory, antiatherogenic, and antiproliferative properties 
[169]. The ability of dietary NO3 to boost NO produc-
tion may be linked to the antioxidant properties of its 
active components such as ascorbic acid, and betalain, 
which help minimize the scavenging of NO by super-
oxide [169]. These active ingredients may also improve 



Page 11 of 17Norouzzadeh et al. Nutrition Journal           (2025) 24:47 

collagen synthesis [170–172]. Dietary NO3 supplements 
have been found to enhance vascular health facilitating 
the relaxation of smooth muscles, stimulating potassium 
channels, improving the effectiveness of oxidative phos-
phorylation, and boosting mitochondrial respiration [41, 
173, 174].

Various nutritional interventions, including potas-
sium [175], and omega-3 [176], have been implemented 
for improving arterial stiffness and endothelial function. 
However, their impact is not as significant as the effect of 
dietary NO3 on vascular health markers [22]. A network 
meta-analysis revealed that current vitamin interven-
tions do not significantly enhance arterial stiffness [177]. 
Nevertheless, prolonged vitamin D supplementation 
could effectively reduce PWV by 0.15 m/s [177]. Further-
more, a meta-analysis of 22 clinical trials demonstrated 
that a moderate weight loss of 8% of initial body weight 
may result in a decrease in PWV by 0.32  m/s [178]. A 
comprehensive analysis indicated that mineralocorti-
coid receptor inhibitors have a notable advantage over 
other antihypertensive medications in enhancing PWV 
(-0.75 m/s), AI (-6.74%), and FMD (1.18%), regardless of 
BP levels [179]; This impact is similar and nearly identi-
cal to the findings of the Norouzzadeh et al. study that 
focused on the effect of dietary NO3 supplementation 
on changes in PWV (-0.75  m/s), AI (-7.19%), and FMD 
(1.22%) [22].

Our study possesses numerous strengths, including a 
comprehensive assessment of outcomes, a dose-response 
analysis, an assessment of the certainty of the evidence, 
and a comprehensive safety analysis. However, our study 
had limitations, primarily due to the high heterogeneity 
observed among the included studies. Nevertheless, it 
is important to note that this level of heterogeneity was 
unavoidable. Additionally, the studies included in our 
study did not consider the baseline dietary NO3 intake 
from participants’ regular diets, apart from the supple-
mental NO3 interventions. This may have introduced 
unmeasured variability in the overall NO3 intake.

While the primary outcomes of this study were of 
acceptable certainty, the CoE for some outcomes was 
rated as low or very low. This indicates that future studies 
may influence the findings, meaning the observed effects 
could differ from the actual effects. The main factors con-
tributing to the downgrading of evidence included high 
heterogeneity, publication bias, and a limited number 
of studies. Future research should focus on specific age 
and population groups to address these issues to reduce 
heterogeneity. Additionally, as the number of stud-
ies increases, the risk of publication bias is expected to 
decrease, leading to a more robust evidence base across 
different outcomes. Notably, elderly individuals who have 
a higher prevalence of atherosclerosis and those with 
chronic conditions such as cardiovascular disease and 

HTN may benefit more from dietary NO3 supplementa-
tion. Also, among the sources of heterogeneity, the dose 
of NO3 used is a key factor. Intervention effectiveness 
depends on potency (the amount of active ingredients 
present) and purity (the absence of contaminants). Future 
studies should ensure appropriate doses of NO3 sources, 
accounting for NO3 equivalents and other bioactive 
compounds, to enhance the reliability and applicability of 
findings.

Further studies could investigate how dietary NO3s 
may synergistically impact when combined with the 
DASH or Mediterranean diets. It is important to study 
the long-term safety of dietary NO3, and future stud-
ies should carefully monitor NO3 intake from different 
sources, especially in control groups.

Conclusions
In conclusion, dose-dependent effects have been estab-
lished between dietary NO3 and plasma NO3 and NO2 
levels, BP, and vascular health markers. Due to the high 
NO3 content and other active ingredients in dietary NO3 
sources, they may effectively regulate BP and enhance 
arterial stiffness and endothelial function. Moreover, 
individuals with HTN may derive greater benefits from 
these sources. The observed effects are at times on par 
with or comparable to existing treatments, including 
dietary and pharmaceutical interventions. Before clini-
cal application, further research is required to validate 
the long-term safety and adherence to dietary NO3 
supplementation.
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