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Abstract 

The gut microbiome can modulate nutrient metabolism to produce many metabolites interacting with the host. 
However, the intricate interactions among dietary intake, the gut microbiome and metabolites, and host metabolites 
need to be further explored although some studies have been devoted to it. Here, in a cross-sectional studies, 88 chil-
dren aged 2–12 years were enrolled from northwestern China. The dietary intake data were collected via a designed 
food frequency questionnaire to calculate plant-based diet indices (PDIs). Stool and plasma samples were collected 
for metagenomic and broad-targeted metabolomic analysis. Spearman’s rank correlation was used to describe 
the associations between nutrients/PDIs and the gut microbiota and metabolites. PDI was significantly positively 
associated with Bilophila wadsworthia, Bacteroides thetaiotaomicron, and Alistipes indistinctus, etc., but was obviously 
negatively correlated with Roseburia intestinalis, Faecalibacterium prausnitzii, etc. However, these species showed 
no significant associations with either healthy PDI (hPDI) or unhealthy PDI (uPDI). Interestingly, hPDI was significantly 
positively related to species, including Ruminococcus bicirculans, and was significantly negatively associated with uPDI, 
and vice versa. The above correlation trends were also observed between PDIs and predicted gut microbial functional 
pathways, microbial metabolites and the host metabolome. Notably, the significantly related pathways were focused 
mainly on substances and energy metabolism. PDI was significantly positively associated with the fecal contents 
of P-aminobenzoate, chenodeoxycholic acid, 4,6-dihydroxyquinoline, quinoline-4,8-diol, etc., but was significantly 
negatively associated with those of TMAO, FFA, creatine phosphate, etc. In plasma, PDI was significantly positively 
associated with sarcosine, ornithine, L-histidine, etc., but was distinctly negatively correlated with FFAs, carnitine C2:0, 
etc. Strikingly, the healthy plant-based diet index (hPDI) is correlated with increased levels of metabolites related 
to tryptophan metabolism, whereas the unhealthy PDI (uPDI) is linked to increased levels of metabolites associ-
ated with tyrosine and sphingolipid metabolism, which are pathways commonly associated with Western diets. Our 
studies provide reliable data support and a comprehensive understanding of the effects of dietary intake on the gut 
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microbiome and microbial and host metabolites and lay a foundation for further studies of the diet-gut microbiota-
microbial metabolites and host metabolism.

Keywords Dietary intake, Plant-based indices, Children, Shotgun metagenomic sequencing, Untargeted 
metabolomics, Correlation analysis

Introduction
Dietary intake and nutrition could significantly shape the 
developmental trajectory of children by changing the gut 
microbiome and its metabolites to modulate host metab-
olism [1]. Conversely, shifts in gut microbial composi-
tion and function can impact host appetite and nutrient 
absorption, suggesting a potentially modifiable approach 
to optimize children’s growth through targeted manipu-
lation of the gut microbiota and metabolites [2, 3]. A 
balanced diet is essential, as it not only secures the nutri-
ents required for children but also plays a vital role in 
modulating the gut microbiota and metabolites, includ-
ing short-chain fatty acids (SCFAs), to modulate host 
immunity, hormone production, and intestinal barriers 
to ultimately impact host metabolism and body health, 
such as fostering the development of robust muscle bone 
mass in young individuals [4–6]. Therefore, exploring the 
intricate interactions and associations between dietary 
intake and the gut microbiota and its metabolites, as well 
as host metabolism, is essential.

Many dietary indices have been created to assess 
the nutritional intake of children in an intuitive man-
ner, such as the Youth Healthy Eating Index (YHEI) 
[7] in the United States, the Mediterranean Diet Qual-
ity Index in Children and Adolescents (KIDMED) [8] 
in Spanish, and the Chinese Children Dietary Index 
(CCDI) [9]. These indices emphasize increasing dietary 
diversity and plant-based food intake while advocating 
for reduced consumption of solid fats, salt, and sugar 
[10]. A plant-based diet index (PDI) differentiating 
between a healthy, unhealthy, and overall plant-based 
diet index (hPDI, uPDI, and PDI) offers a promis-
ing approach to standardize and compare studies and 
integrate results without completely excluding the 
consumption of animal-derived foods [11]. PDIs have 
gained widespread use in nutritional and microbiota 
research because of their ability to quantify the meta-
bolic impact of diet-microbiota interactions [12, 13]. 
This study revealed that hPDI, rich in fiber and phy-
tochemicals, was positively associated with beneficial 
bacteria such as Eubacterium and Faecalibacterium, 
the regulation of gut barrier function, and microbial 
and lipid metabolism [14]. Furthermore, integrating 
multiomics, especially metagomics and metabolomics, 
is a pivotal research method for comprehensively elu-
cidating diet-microbe-host dynamics [15]. However, 

current research on PDIs in children has focused 
predominantly on body composition, particularly in 
those who are overweight or obese [16, 17]. The pre-
cise and comprehensive relationships among PDIs, the 
gut microbiota, and microbial and host metabolites in 
children remain to be elucidated. The development of 
multiomics joint analysis has made diet-microbiome-
metabolite studies possible.

Given the influences of regional and dietary factors on 
the gut microbiota, we recruited children from Lanzhou 
city in Northwest China to elucidate the comprehen-
sive interactions among dietary intake, the gut microbi-
ome, and microbial and host metabolites. This region is 
notable for its distinctive dietary patterns, characterized 
by high intake of staples such as corn, wheat, and naked 
oats, along with elevated consumption of beef, mutton, 
and chicken [18]. Our study focused on exploring the 
associations between PDIs and the gut microbiome and 
microbial and plasma metabolome via multiomics in 
this unique population, aiming to contribute to the cur-
rent understanding of interactions among dietary intake 
evaluated by PDIs, the gut microbiota, and microbial and 
host blood metabolomes in children.

Materials and methods
Study cohort
One hundred healthy subjects aged 2–12  years were 
recruited from the outpatient department of Gansu 
Province Hospital Rehabilitation Center (Lanzhou 
City, Gansu Province) in Northwestern China. The 
participants were subsequently required to complete a 
designed questionnaire covering essential information, 
lifestyle factors, familial medical history, bowel habits, 
and dietary patterns with the assistance of their guard-
ians. Subjects with gastrointestinal disorders, recent 
antibiotic use (past one month), infections, medications 
affecting the gut microbiota, a history of drug allergies, 
and those consuming fermented foods such as yogurt 
were excluded. Meanwhile, consent forms were signed 
by the legal guardians of the participants.

We included 100 participants in the statistical analy-
sis and excluded 12 of them due to missing or inaccu-
rate dietary data, which might affect the reliability of 
the analysis results. Finally, we used the data of 88 par-
ticipants for analysis.
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Sample collection
Phenotypic characteristics, including age, sex, height, 
weight, and medical and medication history, were 
recorded for each subject. Overnight fasting venous 
blood was collected from each participant and cen-
trifuged at 3,000  rpm (1580 × g) for 10  min to collect 
the plasma (Cence TDZ5-WS, China). One gram of 
each stool sample was collected into a 2  mL tube con-
taining DNA storage buffer for shotgun metagenomic 
sequencing, while another gram of each stool sample 
was collected into a separate 2  mL tube with normal 
saline for untargeted metabolomics analysis. The col-
lected fecal and plasma samples were stored at −80  °C 
and transported to the laboratory on dry ice for further 
examination.

Dietary intake collection
Dietary intake information was obtained via a semiquan-
titative food frequency questionnaire (FFQ), which con-
tains 87 food items across 25 food categories including 
Chinese and Western staple foods, cereals and potatoes, 
legumes, red meats (pork, beef, mutton), poultry, fish 
and shellfish, egg, dairy products, fried foods, vegetables, 
fruits, desserts, nuts, preserved foods, sweetened bever-
ages, coffee, tea, alcoholic beverages and etc. To get the 
frequency of consumption, nine levels were set, ranging 
from ‘never or 1–2 times a month’ to ‘ ≥ 3 times a day’ 
(1 = never; 2 = 1–2 times/month; 3 = 3–4 times/month; 
4 = 1–2 times/week; 5 = 3–4 times/week; 6 = 5 or more 
times/week;7 = 1 time/day; 8 = 2 times/day; 9 = 3 or more 
times/day). To obtain the quantity of each consumed 
food, five levels varied from ‘none or less than 50 g/time’ 
to ‘ more than 200  g/time’ were made (1 = None or not 
more than 50  g/time; 2 = More than 50  g but less than 
100 g each time; 3 = more than 100 g but less than 150 g 
each time; 4 = more than 150 g but less than 200 g each 
time; 5 = more than 200 g each time.). For details, please 
refers to the FFQ. Then the daily intake of each food were 
calculated by frequency multiply amount.

Calculation of plant‑based diet indices
Plant-based diet indices (PDIs), encompassing an over-
all plant-based diet index (PDI), a healthful PDI (hPDI), 
and an unhealthy PDI (uPDI), are increasingly being 
utilized to evaluate the quality of children’s diets in rela-
tion to health outcomes [19, 20]. Based on the research 
of Satija [11] and Miao et  al. [12]., Chinese Food Com-
position Table  2018 and the Chinese Dietary Guideline 
2022, and taken into account the local dietary patterns 
in northwestern China as a basis for classification, the 
foods were categorized into 14 distinct food groups. 
Detailed information on foods that make up the 14 

food categories was presented in Table S1B2 of the sup-
plementary file. Then, we classified 14 food categories 
into the healthy plant-based diet group (hPDI, includ-
ing whole grains, fruits, vegetables, nuts, and potatoes), 
the unhealthy plant-based diet group (uPDI, comprising 
refined grains, fried foods, sweetened beverages, des-
serts, preserved products), and the animal food group 
(consisting of dairy, eggs, fish, meat, and western foods). 
Each of the 14 food items was subsequently stratified into 
consumption quintiles and assigned either positive or 
inverted scores. For ascending scores, a rating of 5 was 
allocated to the highest quintile, and a rating of 1 was 
allocated to the lowest quintile; conversely, for descend-
ing scores, the pattern was reversed such that a score of 
5 was given to the lowest quintile, and a score of 1 was 
given to the highest quintile. When calculating the PDI, 
we included all the above-mentioned plant-based foods. 
The plant food groups were assigned ascending scores 
(from 1 to 5) based on the intake quintiles, while the ani-
mal food groups were assigned descending scores (from 
5 to 1). The PDI ranges from 14 (the lowest) to 70 (the 
highest), and a higher score indicates a greater intake of 
plant-based foods. For the calculation of hPDI, ascend-
ing scores were given to the healthy plant food groups, 
and descending scores were assigned to the unhealthy 
plant food groups and animal food groups. As for the 
uPDI, ascending scores were applied to the unhealthy 
plant food groups, and descending scores were given to 
the healthy plant food groups and animal food groups. 
Additionally, PDIs were treated as continuous variables 
to explore their relationships with the aforementioned 
factors and food groups.

Shotgun metagenomic sequencing
DNA preparation and sequencing
DNA extraction was performed via the phenol/trichlo-
romethane method after the samples were thawed on ice. 
The extracts were then treated with DNase-free RNase, 
and the DNA quality was measured via agarose gel elec-
trophoresis and a Qubit 3.0 fluorimeter (Thermo Fisher, 
Waltham, MA, USA). Shotgun metagenomic sequenc-
ing was conducted on the BGISEQ-500 platform with 
a single-end read length of 150 bp [21]. Raw reads con-
taining 50% low-quality bases (quality ≤ 20) or more than 
five ambiguous bases were excluded, and the remaining 
reads were then aligned to the human reference genome 
(Hg19) database to remove host DNA as previously 
described [22]. Finally, an average of 70.28 million clean 
reads were remained after filtering (Refers to Tab S1I. Fil-
ter_data for details). The remaining reads were defined 
as clean reads and utilized for obtaining taxonomic and 
functional profiles.
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Taxonomic and functional annotation
MetaPhlAn 4.0 (Metagenomic Phylogenetic Analysis 
4.0) was employed for taxonomic profiling, following 
the methodology of a previously published study [23]. 
HUMAnN 4.0 (the HMP Unified Metabolic Analysis 
Network) was used to profile the abundance of micro-
bial metabolic pathways and other molecular functions 
from the metagenomic sequencing data as previously 
described [24].

Diversity calculation
Alpha diversity was assessed by the Shannon index, 
Simpson index, and inverse Simpson index of the gut 
microbiota across various levels. Beta diversity was eval-
uated by Bray‒Curtis distance at various taxonomic lev-
els, as depicted by principal coordinate analysis (PCoA). 
Permutational multivariate analysis of variance (PER-
MANOVA) was employed to compare the significance 
between groups.

Correlation analysis
To investigate the correlations between PDIs and vari-
ous food types in terms of species, genera, phyla, and 
predicted functional pathways, we employed Spearman’s 
rank correlation and partial Spearman’s rank correlation 
analyses (adjusted for BMI, sex, and age) [25]. For various 
food types, Spearman’s correlation analysis was used. For 
PDIs, partial Spearman’s rank correlation analysis was 
used. We used partial correlation analysis (short for pcor 
in the figures) to study the linear relationship between 
two variables after excluding the influence of one or more 
independent factors. This method was applied to analyze 
the correlations between species, genera, phyla, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
ways, fecal and plasma metabolites, and food intake after 
adjusting for age, sex and BMI. We employed the false 
discovery rate (FDR) for correction, and all p-values in 
the article have been adjusted.

Metabolomic profiling of fecal and plasma metabolites
Sample preparation and extraction
The samples stored at −80  °C in a refrigerator were 
thawed on ice and vortexed for 10 s. A 50 μL sample and 
300 μL extraction mixture (ACN: methanol = 1:4, v/v) of 
internal standards, an internal standard solution contain-
ing Lidocaine, L-tryptophan-d5, succinic acid-d4, Indole-
3-carboxylic Acid-d5, D-Luciferin, [2H5]-Phenoxy acetic 
Acid, [2H5]-Phenoxy acetic Acid, Sulfaquinoxaline-13C6 
at a concentration of 1  µg/mL, were added to a 2  mL 
microcentrifuge tube. The sample was vortexed for 3 min 
and then centrifuged at 12,000 rcf (× g) for 10 min at 4 °C. 
Two hundred microlitres of the upper layer were col-
lected, stored at −20 °C for 30 min, and then centrifuged 

at 12,000 rcf (× g). A 180 μL aliquot of the upper layer 
was removed for UPLC‒MS analysis.

UPLC Conditions
All samples were analyzed via a UPLC‒MS system 
according to the instrument instructions (UPLC, SHI-
MADZU Nexera X2, Kyoto, Japan; MS, Applied Biosys-
tems 6500 Q TRAP, Thermo Fisher Scientific, Waltham, 
America). The UPLC conditions were as follows: col-
umn, water ACQUITY UPLC HSS T3 C18 (1.8  μm, 
2.1  mm × 100  mm); column temperature, 40  °C; flow 
rate, 0.4  mL/min; injection volume, 2 μL; solvent sys-
tem, water (0.1% formic acid): acetonitrile (0.1% for-
mic acid); and column, 5% mobile phase B (0.1% formic 
acid acetonitrile solution) for 0  min, linearly graded to 
90% mobile phase B (0.1% formic acid acetonitrile solu-
tion) for 11 min, held for 1 min, and then returned to 5% 
mobile phase B in 0.1  min, held for 1.9  min. The posi-
tive and negative ion conditions for MS were as follows: 
ion spray voltage (ESI + 5500v, ESI- −4500v), ion source 
gas 1 (ESI + 50psi, ESI −50 psi), declustering potential 
(Dp) (ESI + 60v, ESI- −60v), curtain gas (ESI + 35psi, ESI 
−35psi), temperature (ESI + 550  °C, ESI −550  °C), and 
ion source gas 2 (ESI + 60psi, ESI −60psi), and collision 
energy (ESI + 30v, ESI- −30v).

Metabolite information extraction and processing
The raw data files acquired by LC–MS were converted to 
mzML format via Proteowizard software. Peak extrac-
tion, peak alignment, and retention time correction were 
performed via the xcMS program [26]. The peak areas 
were corrected via the “SVR” method. Peaks with a reten-
tion rate lower than 50% were discarded for each set of 
samples. Afterward, metabolic identification informa-
tion was obtained by searching the laboratory’s self-built 
database, integrated public database, AI database, and 
metDNA.

KEGG annotation and enrichment analysis
Functional analyses were performed via the KEGG Com-
pound Database (http:// www. kegg. jp/ kegg/ compo und/) 
to annotate the identified metabolites, and the annotated 
metabolites were subsequently mapped to the KEGG 
pathway database (http:// www. kegg. jp/ kegg/ pathw ay. 
html). P values for the given list of metabolites were 
determined via hypergeometric testing to identify signifi-
cantly enriched pathways.

Statistical analysis
Packages in R (version 4.2.0) were utilized in this study. 
Student’s t-test and the Kruskal‒Wallis test were used 
to determine differences in clinical indicators between 
children with PDIs and those with various food types. 

http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
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Significant associations between gut microbes, micro-
bial and plasma metabolites, and PDIs were evaluated 
by partial Spearman’s rank correlation. The associations 
between the microbes and the metabolites were assessed 
via Spearman’s rank correlation test. Differentially 
enriched KEGG pathways of different metabolites were 
identified on the basis of their reporter score, which was 
calculated from the z scores of individual KO groups. All 
the statistical tests were two-tailed, and a P value of less 
than 0.05 was considered statistically significant. Prin-
cipal coordinate analysis (PCoA) was performed via the 
statistics function prcomp within R (www.r- proje ct. org).

Results
PERMANOVA of various phenotypes and PDIs on the gut 
microbiota and metabolites
A total of 41 healthy female and 47 healthy male sub-
jects (mean BMI ± SD, 17.17 ± 4.85) aged 2–12  years 
(mean age ± SD, 5.71 ± 2.30) were included in this study 
(Table  S1A). The PDI, hPDI, and uPDI were calcu-
lated to assess their relationships with 14 food types 
(Table S1B, Figure S1). PDI was significantly positively 
associated with preserved foods, desserts, sweetened 
beverages, whole grains, vegetables and fruits, pota-
toes, nuts, and refined grains but negatively associated 

with eggs and fish (Table  S1D). hPDI was significantly 
positively associated with whole grains, vegetables and 
fruits but negatively associated with preserved foods, 
desserts, sweetened beverages, fried foods, dairy prod-
ucts, western foods, and fish (Table  S1D). uPDI was 
significantly positively associated with preserved foods, 
desserts, sweetened beverages, fried foods, and dairy 
products but negatively associated with whole grains, 
vegetables and fruits, potatoes, nuts, meat, eggs, and 
fish (Table  S1D). These findings align closely with the 
calculations of PDIs.

To evaluate the impact of PDIs, 14 food types, and 
various phenotypes on the gut microbiota and fecal and 
plasma metabolites, PERMANOVA was used (Table  1, 
Table  S1D). The results showed that PDI significantly 
affected the composition at the genus level of the gut 
microbiota (P = 0.023) and the fecal and plasma metabo-
lites (P = 0.022 and P = 0.028, respectively). In addition, 
food types such as potatoes (P = 0.037), preserved foods 
(P = 0.009), sweetened beverages (P = 0.020), dairy prod-
ucts (P = 0.001), and western foods (P = 0.021) had signif-
icant effects on the gut microbiota but not on microbial 
and plasma metabolites. No significant effect on the gut 
microbiota or fecal or plasma metabolites was observed 
for hPDI or uPDI.

Table 1 PERMANOVA of various phenotypes and PDIs on the gut microbiota and fecal and plasma metabolites

Variables Mean ± SD Genera Fecal metabolism Plasma metabolism

R2 P value R2 P value R2 P value

Sex 41:47(F:M) 0.005 0.971 0.012 0.362 0.006 0.956

BMI 17.17±4.85 0.009 0.633 0.010 0.543 0.012 0.389

Age 5.71±2.30 0.018 0.102 0.018 0.064 0.019 0.039
Birth weight 3.40±0.65 0.008 0.749 0.010 0.582 0.010 0.586

Birth height 50.97±2.62 0.015 0.199 0.012 0.395 0.016 0.115

PDI 44.48±5.37 0.023 0.023 0.022 0.022 0.021 0.028
hPDI 44.44±7.40 0.016 0.158 0.012 0.322 0.013 0.284

uPDI 45.01±6.81 0.041 0.238 0.014 0.225 0.011 0.524

Nuts 9.38±12.48 0.014 0.228 0.009 0.694 0.011 0.415

Vegetables and fruits 78.62±88.27 0.007 0.818 0.014 0.221 0.012 0.336

Whole grains 23.38±32.76 0.016 0.156 0.008 0.879 0.010 0.562

Potatoes 14.73±22.85 0.023 0.037 0.011 0.406 0.007 0.894

Refined grains 149.27±119.55 0.011 0.511 0.009 0.706 0.011 0.516

Fried foods 5.18±6.71 0.019 0.075 0.013 0.300 0.012 0.130

Desserts 7.71±9.85 0.011 0.560 0.009 0.731 0.016 0.130

Preserved foods 1.01±1.81 0.027 0.009 0.011 0.493 0.009 0.646

Sweetened beverages 16.72±48.52 0.027 0.020 0.008 0.860 0.009 0.660

Dairy products 22.46±73.84 0.039 0.001 0.009 0.642 0.012 0.403

Egg 31.43±19.42 0.010 0.530 0.013 0.286 0.011 0.416

Meat 49.06±45.10 0.003 0.991 0.009 0.766 0.013 0.312

Fish 12.21±10.76 0.003 0.992 0.006 0.968 0.013 0.274

Western foods 3.02±3.71 0.024 0.021 0.015 0.131 0.009 0.695

http://www.r-project.org
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Effects of PDI on the composition and function of the gut 
microbiota
All the ordered phyla were annotated to the gut micro-
biota of the children (Figure S2A). Among them, Firmi-
cutes showed a significant negative association with PDI, 
while Fusobacteria presented a clear negative association 
with hPDI, and Ascomycota presented an evident asso-
ciation with uPDI. Among the top 20 abundant genera 
(Figure S2B), Alistipes was significantly positively associ-
ated with PDI, whereas Faecalibacterium and Roseburia 
were negatively associated with PDI. Ruminococcus was 
significantly positively associated with hPDI. In terms of 
the top 20 abundant species (Figure S2C), Faecalibacte-
rium prausnitzii, along with Roseburia intestinalis, was 
significantly negatively associated with PDI. Bifidobacte-
rium longum also exhibited a significant negative associa-
tion with hPDI.

Partial correlation analysis was used to illustrate the 
effects of PDIs on the composition of the gut micro-
biota (Fig.  1, Figure S3). At the genus level (Figure S3), 
Bilophila, Alistipes, Hydrogeniiclostidium, Anaerofus-
tis, Gordonibacter, and Eisenbergiella were significantly 
positively associated with PDI, whereas Roseburia, Hae-
mophilus, Faecalibacterium, and Veillonella were sig-
nificantly negatively associated with PDI. hPDI was 
significantly positively associated with Pseudorumino-
coccus, Ruminococcus, and Butyricicoccus but negatively 
associated with Agathobaculum, Granulicatella, Rothia, 
and Parvimonas. uPDI was positively associated with 
Parvimonas and Massiliimalia. At the species level, PDI 
was significantly positively associated with Anaerofustis 
stercorihominis, Enterobacter hormaechei, Anaerofus-
tis stercorihominis, Gordonibacter pamelaeae, Bilophila 
wadsworthia, Clostridium symbiosum, Bacteroides nor-
dii, Bacteroides thetaiotaomicron, and Alistipes indistinc-
tus but was negatively associated with Faecalibacterium 
prausnitzii, Agathobaculum butyriciproducens, Haemo-
philus sputorum, Veillonella dispar, Veillonella atypica, 
Veillonella parvula, Haemophilus parainfluenzae, Rose-
buria intestinalis, Streptococcus cristatus, and Strepto-
coccus cristatus. hPDI was positively associated with 
Bifidobacterium animalis, Eubacterium siraeum, Cop-
rococcus eutactus, Eubacterium sp. AF34_35BH, and 
Ruminococcus bicirculans, but negatively associated 
with Agathobaculum butyriciproducens, Granulicatella 
adiacens, Abiotrophia defective, Bifidobacterium longum, 
Streptococcus intermedius, Enterococcus avium, and 
Parvimonas micra. uPDI was clearly positively associated 
with Massiliimalia massiliensis, Massiliimalia timonen-
sis, Abiotrophia sp. HMSC24B09 and Parvimonas micra; 
however, it was significantly negatively associated with 
Fructilactobacillus sanfranciscensis, Ruminococcus bicir-
culans, and Blautia sp MSK 20_85.

Spearman’s rank correlation analysis was used to ana-
lyze the associations between each dietary item and 
the gut microbiota. Nuts were significantly positively 
associated with Fructilactobacillus sanfranciscensis 
and Ruminococcus bicirculans but negatively associ-
ated with Abiotrophia sp. HMSC24B09. Vegetables 
and fruits were significantly negatively associated with 
Agathobaculum butyriciproducens, Granulicatella adi-
acens, and Abiotrophia sp. HMSC24B09. Whole grains 
were clearly positively associated with Coprococcus 
eutactus and Bacteroides thetaiotaomicron. Desserts 
were significantly positively associated with Entero-
coccus avium but negatively associated with Abiotro-
phia sp. HMSC24B09 and Bifidobacterium animalis 
Interestingly, preserved foods, sweetened beverages, 
and dairy products were significantly positively associ-
ated with Parvimonas micra, Bifidobacterium longum, 
Bilophila wadsworthia, Clostridium symbiosum, and 
Anaerofustis stercorihominis but negatively associated 
with Faecalibacterium prausnitzii, Veillonella dispar, 
Veillonella infantium, Veillonella atypica, Haemophi-
lus parainfluenzae, Roseburia intestinalis, and Rumi-
nococcus bicirculans. Western foods were significantly 
positively associated with Parvimonas micra but nega-
tively associated with Massiliimalia massiliensis and 
Gordonibacter pamelaeae. Fish was significantly nega-
tively associated with Massiliimalia massiliensis and 
Bilophila wadsworthia. Meat was significantly nega-
tively associated with Massiliimalia timonensis and 
Bifidobacterium animalis. Eggs were positively associ-
ated with Abiotrophia defectiva.

HUMAnN 4.0 was used to obtain the functional pro-
file. In total, 90 pathways were found to be significantly 
correlated with PDIs (Fig. 2). Twenty pathways, includ-
ing pyruvate fermentation to propanoate I, 4-amin-
obutanoate degradation V, gluconeogenesis, anaerobic 
energy metabolism, L-ascorbate biosynthesis IV, pep-
tidoglycan biosynthesis II, glucarate and D-galactarate 
degradation I, L-alanine biosynthesis, menaquinol 
biosynthesis, etc., were significantly positively associ-
ated with PDI. Forty-four pathways, including the TCA 
cycle, sulfur amino acid biosynthesis, fatty acid biosyn-
thesis, heterolactic fermentation, and polysaccharide 
degradation, were significantly negatively associated 
with hPDI (Fig.  2). Interestingly, these hPDI-related 
metabolic pathways were significantly positively asso-
ciated with uPDI. For every single food type, des-
serts, sweetened beverages, and dairy products, which 
contributed the most to the uPDI, were significantly 
positively associated with the uPDI-related metabolic 
pathways.



Page 7 of 15Zhu et al. Nutrition Journal           (2025) 24:50  

Fig. 1 The gut microbial species significantly associated with PDIs and individual food types. Spearman’s rank partial correlation test was employed 
to assess the relationships between species and PDIs. Spearman’s rank correlation test was used to examine the associations between species 
and each food type. + , P < 0.01; *, P < 0.05
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Correlation analysis between fecal metabolites and PDIs
Partial correlation analysis revealed 527 fecal metabolites 
that were significantly correlated with PDIs. A total of 76 
metabolites were annotated to the KEGG pathway data-
base. Fifty-six metabolites were found to be significantly 
associated with PDI (Fig. 3). Fifteen metabolites, includ-
ing P-aminobenzoate, chenodeoxycholic acid, 19-hydrox-
ytestosterone, traumatic acid, 20-hydroxy leukotriene 
B4, calcitetal acid, 4,6-dihydroxyquinoline, quinoline-
4,8-diol, biotin, trans-cinaldehyde, and hydrocinnamic 
acid, which were involved mainly in tryptophan metab-
olism, alpha-linolenic acid metabolism, steroid bio-
synthesis, biotin metabolism, folate biosynthesis, and 
ubiquinone and other terpenoid-quinone biosynthesis, 
were positively associated with PDI (Figure S4). The other 
41 metabolites, including guanidineacetic acid, greatine 
phosphate, 12-ethyl-8-propylbacteriochlorophyllide, tri-
methylamine-N-oxide, 5-aminovaleric acid, D-malic acid, 
DHA and AA, which were involved mainly in porphyrin 

and chlorophyll metabolism; D-amino acid metabolism; 
biosynthesis of unsaturated fatty acids; arginine and pro-
line metabolism; and glyoxylate and dicarboxylate metab-
olism, were significantly negatively associated with PDI 
(Figure S4). We then analyzed the correlations between 
the above metabolites and the significantly PDI-related 
species (Figure S5). The PDI-positively associated spe-
cies were significantly positively correlated with the PDI-
positively associated fecal metabolites. For the species 
and fecal metabolites negatively associated with PDI, the 
same correlation was shown, suggesting a relationship 
between the gut microbiota and fecal metabolites.

For hPDI, 33 fecal metabolites were significantly asso-
ciated with hPDI (Fig.  3). Seven metabolites, including 
heparin, 3-hydroxybutyric acid, 2-hydroxybutyric acid, 
sterigmatocystin, and (R)-2-hydroxy-3-phenylpropionic 
acid, which were involved mainly in thiamine metabo-
lism, were significantly positively associated with hPDI 
(Figure S6). Unsurprisingly, the other 26 metabolites, 

Fig. 2 The predicted functional pathways (PFPs) significantly associated with PDIs and 14 food types. Spearman’s rank partial correlation test 
was used to evaluate the relationships between PFPs and PDIs. Spearman’s rank correlation test was used to explore the associations between PFPs 
and each food type. + , P < 0.01; *, P < 0.05
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including salicylaldehyde, tyramine, 3-hydroxypheny-
lacetic acid, 4-acetamidobutyric acid, P-hydroxyphenyl 
acetic acid, L-gluconolactone, succinic acid, trimeth-
ylamine-N-oxide, etc., which were involved mainly in 
tyrosine metabolism, phenylalanine metabolism, galac-
tose metabolism, sphingolipid metabolism, pyruvate 
metabolism, starch, and sucrose metabolism, oxidative 
phosphorylation, steroid biosynthesis, and nicotinate and 
nicotinamide metabolism, were significantly negatively 
associated with hPDI (Figure S6). An association study 
revealed that hPDI-positively correlated species, such 
as Ruminococcus bicirculans, exhibit significant posi-
tive associations with hPDI-positive fecal metabolites. 
Conversely, a similar negative correlation was observed 
between hPDI-negatively associated species and their 
respective metabolites (Figure S5).

For uPDI, 21 significantly associated fecal metabo-
lites were observed (Fig. 3). Ten metabolites, including 
aminoisobutyric acid; N,N-bis  (2-hydroxyethyl) dode-
canamide, which were involved mainly in sphingolipid 
metabolism; the sphingolipid signaling pathway; apop-
tosis; necroptosis; cysteine and methionine metabo-
lism; glycine, serine and threonine metabolism; tyrosine 
metabolism; valine, leucine, and isoleucine degrada-
tion; and folate biosynthesis; were positively associated 
with uPDI. Eleven metabolites, including malonic acid, 
3-hydroxybutanoic acid, 2-hydroxybutanoic acid, deox-
yguanosine 5-monophosphate (dGMP), 3-methylben-
zaldehyde, 3-hydroxycinnamic acid, etc., which were 

involved in purine metabolism, fatty acid biosynthesis, 
the cAMP signaling pathway, butanoate metabolism, 
4-acetamidobutyric acid, P-hydroxyphenyl acetic acid, 
L-gluconolactone, succinic acid, trimethylamine-N-
oxide, etc., and the Akt signaling pathway, were sig-
nificantly negatively associated with uPDI (Figure S7). 
Correlation analysis between the gut microbiota and 
fecal metabolites revealed that the uPDI-negatively 
associated species, including Veillonella dispar and 
Ruminococcus bicirculans, were significantly positively 
associated with the uPDI-negatively associated fecal 
metabolites (Figure S5).

For every single food type, associations were also 
observed with the above fecal metabolites (Fig. 3). Con-
sistent with PDI, refined grains, potatoes, whole grains, 
and preserved foods were significantly positively associ-
ated with PDI-positively associated metabolites; however, 
meat was negatively associated with PDI-positively asso-
ciated metabolites. Notably, uPDI-negatively associated 
species, namely Gordonibacter pamelaeae, Massiliimalia 
massiliensis, and Massiliimalia timonensis, were nega-
tively associated with the metabolite trimethylamine-N-
oxide. The uPDI-negatively associated species Veillonella 
dispar was negatively associated with the intake of pre-
served foods and butanoate metabolites. The uPDI-posi-
tively associated species Parvimonas micra was positively 
associated with tyrosine metabolites and the intake of 
Western foods and fried foods.

Fig. 3 Fecal metabolites significantly associated with PDIs and 14 food types. Spearman’s rank partial correlation test was used to evaluate 
the relationships between fecal metabolites and PDIs. Spearman’s rank correlation test was employed to explore the associations between fecal 
metabolites and each food type. + , P < 0.01; *, P < 0.05
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Relationships between plasma metabolites and PDIs
To explore the associations between plasma metabo-
lites and PDIs, we also conducted a partial correlation 
analysis. A total of 315 plasma metabolites were sig-
nificantly associated with PDIs. Sixty-seven metabo-
lites were annotated to KEGG pathways. Among these, 
22 plasma metabolites, including D/L-ornithine, phe-
nylacetylene-L-glutamine, L-histidine, sarcosine, thio-
uric acid, DL-3,4-dihydroxyphenylglycol, carboxylic 
acid ester, aromatic alcohol, D-phenylalanine, hippuric 
acid, salicylaldehyde, hercynine, D-mannitol, etc., which 
mainly participate in pathways such as ABC transport-
ers, D-amino acid metabolism, tyrosine metabolism, 
phenylalanine metabolism, primary bile acid biosynthe-
sis, nicotinate and nicotinamide metabolism, etc., were 
significantly positively associated with PDI (Fig.  4, Fig-
ure S8). Ten plasma metabolites, including isonicotinic 
acid, gibberellin A14, amino acids (AAs), 7-methyluric 
acid, carnitine C2:0, FFA(18:2), and FFA(18:1), which 
are involved mainly in the biosynthesis of unsaturated 
fatty acids, insulin resistance, the PPAR signaling path-
way, the GnRH signaling pathway, serotonergic syn-
apses, etc., were significantly negatively associated with 
PDI, suggesting that the intake of food with a lower PDI 
was beneficial for fatty acid metabolism and the release 
of hormones. Interestingly, plant groups (whole grains, 
vegetables, fruits, and potatoes) were positively associ-
ated with PDI-positively associated metabolites, includ-
ing phenylacetylene-l-glutamine, hippuric acid, and 

salicylaldehyde, but were negatively associated with low-
PDI associated metabolites, such as FFAs, 7-methyluric 
acid, and AA.

Twenty-two plasma metabolites were related to hPDI. 
Fifteen plasma metabolites, including porphobilinogen, 
B-nicotinamide mononucleotide, sorbitol 6-phosphate, 
4-hydroxybenzaldehyde, pyroglutamic acid, 2-picolinic 
acid, and 1-pyrroline-4-hydroxy-2-carboxylate, which are 
involved mainly in tryptophan metabolism, the cAMP 
signaling pathway, neuroactive ligand-receptor interac-
tions, carbohydrate digestion and absorption, purine and 
pyrimidine metabolism, D-amino acid metabolism, lin-
oleic acid metabolism, etc., were significantly positively 
associated with hPDI (Fig. 4, Figure S9). Seven metabo-
lites, including DL-carnitine, pantetheine, creatinine, and 
cholesterol sulfate, are involved mainly in the metabo-
lism of histidine, phenylalanine, arginine, and proline; 
steroid hormone biosynthesis; beta-alanine metabolism; 
bile secretion; butirosin and neomycin biosynthesis; and 
thermogenesis, were significantly negatively associated 
with hPDI.

For uPDI, 21 plasma metabolites were found to be 
related. Six metabolites, including carnitine C2:0, L-cys-
tine, DL-carnitine, and 3-hydroxycinnamic acid, which 
are involved in cysteine and methionine metabolism, 
phenylalanine metabolism, bile secretion, and thermo-
genesis, were positively correlated with uPDI. Fifteen 
metabolites, including 4-hydroxy-3-methoxybenzalde-
hyde, 1-pyrroline-4-hydroxy-2- carboxylate, averantin, 

Fig. 4 The plasma metabolites annotated with KEGG maps significantly correlated with PDIs and 14 food types. Spearman’s rank partial correlation 
test was used to evaluate the relationships between plasma metabolites and PDIs. Spearman’s rank correlation test was employed to explore 
the associations between plasma metabolites and each food type. + , P < 0.01; *, P < 0.05
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piperidine acid, 4-hydroxybenzaldehyde, and thiamine, 
which are involved mainly in glycine, serine and threo-
nine metabolism, tryptophan metabolism, porphyrin, 
chlorophyll metabolism, D-amino acid metabolism, and 
purine and pyrimidine metabolism, were significantly 
negatively associated with uPDI (Fig. 4, Figure S10).

hPDI-positively associated plasma metabolites, like 
tryptamine and indoleacetaldehyde, had a positive asso-
ciation with Ruminococcus bicirculans, but uPDI pre-
sented inversely. These metabolites were positively 
associated with vegetables and fruits. uPDI-positively 
associated plasma metabolites, like L-Cystine and 
S-Sulfo-L-Cysteine, had a positive association with 
Candidatus Geddesell stercoravicola and Candidatus 
Allochristensenella caecavium.(Fig. 4, Figure S11.

Intersection analysis of the fecal and plasma metabolomes
We explored the relationship between the fecal 
and plasma metabolomes. For PDI, nine common 

metabolites were significantly related to fecal and 
plasma metabolites. The levels of arachidonic acid 
(AA), FAHFA (8:0/10:0), FFA (20:4), and N1-acetyl-
spermine increased with the intake of foods with low-
PDI score. Cyclamic acid is one of the most widely 
used artificial sweeteners in food and pharmaceuticals 
[27], and its level was significantly increased in high-
PDI related foods. With respect to the metabolites 
significantly associated with hPDI, N4-acetylcytidine 
significantly increased with a reduction in hPDI-related 
foods. N4-acetylcysteine, the only known type of 
RNA acetylation in mammalian mRNAs, can promote 
translation efficiency. For the metabolites significantly 
related to uPDI, ribosyladenosine and 3-hydroxycin-
namic acid were detected in both blood and feces, but 
with the opposite direction of enrichment, indicating 
that these two metabolites were positively associated 
with uPDI in blood but negatively associated with uPDI 
in feces (Fig. 5).

Fig. 5 The Venn diagram shows fecal and blood metabolites that were significantly associated with PDIs. A Nine common metabolites associated 
with PDI were identified in both fecal and plasma samples, among which AA, cyclamic acid, FAHFA (8:0/10:0), FFA (20:4), and N1-acetylspermine 
exhibited consistent trends. B A common metabolite, N4-acetylcytidine, associated with hPDI was detected in both feces and plasma. C Two 
common metabolites associated with uPDI, 3-hydroxycinnamic acid and ribosyladenosine, were observed in both feces and plasma
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Discussion
This study provides insights into the complex interrela-
tionships among plant-based diet indices (PDIs), the gut 
microbiota, and metabolism, revealing that PDIs are sig-
nificantly correlated with the abundance and metabolic 
activities of certain bacterial species. A high-PDI score, 
reflective of a diet rich in plant-based foods, was asso-
ciated with some beneficial bacteria known to increase 
fiber, bile acid, and SCFA metabolism. However, the pres-
ence of certain species was also linked to the intake of 
less healthy plant-based foods, such as processed items 
and sweetened beverages, indicating a potential nega-
tive impact on metabolic health. Metabolomic analysis 
further revealed associations between PDIs and various 
metabolites, suggesting that dietary plant components 
can modulate host metabolism. These findings emphasize 
the importance of diet in shaping the gut microbiome 
and highlight the need for a more nuanced understand-
ing of dietary quality assessments in children.

Associationsbetween PDIs, food types, and the gut 
microbiota
Correlation analysis revealed that PDIs significantly influ-
ence the gut microbiota, with this effect being contingent 
upon the quality of the diet consumed. The PDI, an indi-
cator of a predominantly plant-based diet, was positively 
correlated with several key bacterial species and meta-
bolic processes. Specifically, we identified positive asso-
ciations with fiber-degrading bacteria such as Bacteroides 
thetaiotaomicron [28], and bile acid-tolerant Bilophila 
wadsworthia positively correlated [29], and with the 
SCFAs-producing Roseburia intestinalis [30] and Fae-
calibacterium prausnitzii [31], and Veillonella [32] nega-
tively correlated. Additionally, our observation that the 
PDI positively affects bile acid-tolerant species such as 
Bacteroides thetaiotaomicron, which are associated with 
increased consumption of whole grains, vegetables, and 
fruits, aligns with previous studies showing that their 
abundance correlates with high-fiber diets, potentially 
promoting anti-inflammatory responses in immune cells 
and enhancing mucosal integrity via butyrate production 
[33–35]. We also found that species positively associ-
ated with PDI, such as B. wadsworthia, were significantly 
linked to the intake of fried foods, preserved foods, and 
sweetened beverages. B. wadsworthia, in particular, 
has been shown to have synergistic effects with a fast-
food diet, leading to intestinal barrier dysfunction and 
abnormal bile acid metabolism [36]. Correlation analy-
sis revealed the key roles of B. wadsworthia in lipid and 
phenylalanine metabolism in children’s feces and plasma, 
with phenylalanine metabolism linked to metabolic dys-
functions in obese adults [37]. Therefore, we hypothesize 

that a healthy diet may contribute to children’s health 
by modulating the relative abundance of beneficial gut 
microbiota, thereby influencing metabolic pathways and 
immune responses. Furthermore, the healthy PDI (hPDI), 
indicative of a diet abundant in nutritious plant foods, 
exhibited significant positive correlations with SCFA-
producing bacteria such as Bifidobacterium animalis 
and Ruminococcus bicirculans, which are recognized for 
their roles in enhancing nutrient absorption and reduc-
ing inflammation [38, 39].

Unexpectedly, our findings of a negative correlation 
between F. prausnitzii and PDI diverge from the expected 
positive correlation reported in previous studies [40, 41]. 
Our analysis suggests that the inclusion of vegetables and 
fruits in PDI food types may play a pivotal role in influ-
encing F. prausnitzii levels, which aligns with existing 
evidence from both adult and pediatric populations [14, 
41]. We also observed a positive link was found between 
F. prausnitzii and plasma metabolites related to fruit and 
vegetable intake, including hippuric and caffeic acids. 
For instance, hippuric acid is recognized as a plasma bio-
marker indicative of fruit and vegetable intake in both 
animal and human studies [42]. Caffeic acid, which is 
found in a variety of dietary plants, is known for its anti-
oxidant and anti-inflammatory properties [43]. There-
fore, we speculate that the intake of other foods in the 
PDI diet, such as fried or pickled foods, may mask the 
effect of vegetables and fruits on F. prausnitzii, which still 
participates in the metabolism of vegetables and fruits in 
the body. Additionally, we observed a significant negative 
association between R. intestinalis and the consumption 
of preserved foods. The intake of preserved foods may 
mask the positive effects of other healthy foods, such as 
vegetables, fruits, and whole grains, on R. intestinalis. 
These results highlight the intricate effects of diet on the 
gut microbiota, indicating the need to refine PDI calcu-
lation methods to better assess children’s dietary quality, 
accounting for the complex interactions of dietary com-
ponents with the microbiome.

The associations between PDIs, each food type, 
and metabolites from feces and plasma
Metabolomic analyses revealed significant associa-
tions between PDIs and various metabolites in fecal and 
plasma samples. Notably, we found that fecal metabo-
lites related to tryptophan, biotin, and folate metabo-
lism were positively correlated with PDI, whereas those 
linked to tryptophan metabolism were negatively corre-
lated with meat intake, suggesting a modulatory role for 
plant-based foods in metabolism [44]. Plasma analyses 
revealed higher levels of tryptamine and 4-hydroxyben-
zaldehyde in individuals with high-hPDI score and low-
uPDI score, further emphasizing the metabolic impact 
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of diet quality. Tryptamine, which was associated with 
increased vegetable and fruit intake, elevates tryptophan 
metabolites in animal models, modulating the intestinal 
immune balance [45]. Its suppression under a high-fat 
diet may contribute to the development of diseases, such 
as inflammatory bowel and neuropsychiatric disorders, 
via end metabolites [46, 47]. Conversely, hPDI negatively 
correlates with tyrosine metabolism (such as tyramine, 
3-hydroxyphenylacetic acid, and P-hydroxyphenyl ace-
tic acid) and sphingolipid metabolism (such as sphingo-
sine and 3-dehydrosphinganine), and these pathways are 
positively linked to Western diets and sweetened drinks. 
Tyrosine is known to be highly enriched in obese indi-
viduals compared with the general population [48], and 
its metabolism was also negatively associated with Rumi-
nococcus bicirculans, a species linked to hPDI in our 
study. Ruminococcus bicirculans may play a role in the 
degradation of complex polysaccharides [49] and cogni-
tive dysfunction [50]. Moreover, a Western diet high in 
fat notably affects sphingolipid metabolism via the gut 
microbiota, possibly increasing low-grade inflammation 
[51, 52]. Notably, metabolite studies indicate that healthy 
plant food intake benefits tryptophan metabolism, in 
contrast with the negative impact of unhealthy diets on 
sphingolipids. These findings underscore the importance 
of dietary choices in shaping the metabolic landscape and 
their consequent impact on health.

Intersection analysis revealed that the lipid metabo-
lism-related cometabolites FFA (20:4), FAHFA (8:0/10:0), 
and AA were negatively correlated with the PDI. This 
association likely was deprived of that high-PDI scores, 
indicative of plant-rich food, typically correspond to 
decreased intake of animal-derived foods, which are pri-
mary contributors to dietary lipids. Interestingly, cyc-
lamic acid was uniquely identified in both the fecal and 
plasma samples and was positively correlated with the 
PDI. While the microbial mechanisms driving this link 
remain elusive, they are postulated to be related to the 
intake of less healthy plant-based items, such as pro-
cessed foods and sweetened drinks containing artificial 
sweeteners such as cyclamic acid. This dietary preference 
may account for the presence of cyclamic acid in chil-
dren’s metabolites, underscoring the substantial impact 
of plant food choices on metabolic health and warranting 
further investigation into the intricate interplay among 
diet, gut microbiota, and host metabolism.

Our study has several limitations for improvement in 
future research. First, while we established correlations 
among them, the causal relationships between PDIs 
and the gut microbiota and metabolites remain unclear. 
Second, despite our efforts to balance confounding 
factors in our analysis, inconsistencies in real-world 
data could not be entirely avoided. Third, although we 

calculated and used the cumulative average of the PDIs, 
we could not rule out the potential for misclassification 
of healthy and unhealthy plant-based diets. We hope to 
further refine and improve the PDIs to adapt to diets in 
different cultural backgrounds in the future, which will 
involve exploring more accurate and nuanced ways to 
classify diets and calculate the PDI, so as to enhance the 
reliability and validity of our research findings related 
to diet assessment.

Conclusions
In summary, our research indicates that plant-based 
diet indices (PDIs) are significantly associated with the 
gut microbiota and influence metabolic health. PDIs, 
which are rich in plant-derived foods, are associated 
with diverse microbiota that promote nutrient absorp-
tion and anti-inflammatory responses. However, the 
study also suggested that the quality of plant-based 
foods is essential, as some choices may introduce fewer 
beneficial species and metabolites. This underscores 
the necessity for further studies to refine dietary assess-
ments and explore the intricate links between diet, the 
gut microbiota, and health.
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